机读格式显示(MARC)
- 000 02369cam a2200457 a 4500
- 008 150914r20152011cc a b 001 0 eng d
- 020 __ |a 9787510094682 |c CNY45.00
- 040 __ |a BUA |c BUA |d PUL |d SCT
- 050 _4 |a QA613 |b .N37 2011
- 099 __ |a CAL 022015056794
- 100 1_ |a Nakanishi, Kenji, |d 1973-
- 245 10 |a Invariant manifolds and dispersive Hamiltonian evolution equations = |b 不变流形和色散型哈密顿发展方程 / |c Kenji Nakanishi, Wilhelm Schlag.
- 246 31 |a 不变流形和色散型哈密顿发展方程
- 260 __ |a 北京 : |b 世界图书出版公司, |c 2015.
- 300 __ |a 253 p. : |b ill. ; |c 24 cm.
- 490 0_ |a Zurich lectures in advanced mathematics
- 504 __ |a Includes bibliographical references (p. [241]-249) and index.
- 505 0_ |a 1. Introduction -- 2. The Klein-Gordon equation below the ground state energy -- 3. Above the ground state energy I: near Q -- 4. Above the ground state energy II: Moving away from Q -- 5. Above the ground state energy III: global NLKG dynamics -- 6. Further developments of the theory.
- 520 __ |a "The notion of an invariant manifold arises naturally in the asymptotic stability analysis of stationary or standing wave solutions of unstable dispersive Hamiltonian evolution equations such as the focusing semilinear Klein Gordon and Schrodinger equations. [...] These lectures are suitable for graduate students and researchers in partial differential equations and mathematical physics. For the cubic Klein Gordon equation in three dimensions all details are provided, including the derivation of Strichartz estimates for the free equation and the concentration-compactness argument leading to scattering due to Kenig and Merle."--P.[4] of cover.
- 534 __ |p Reprint. Originally published: |c Zürich : European Mathematical Society, 2011. |z 9783037190951.
- 650 _0 |a Invariant manifolds.
- 650 _0 |a Hamiltonian systems.
- 650 _0 |a Hyperbolic spaces.
- 650 _0 |a Klein-Gordon equation.
- 650 _0 |a Evolution equations.
- 700 1_ |a Schlag, Wilhelm.