MARC状态:审校 文献类型:中文图书 浏览次数:18
- 题名/责任者:
- 联邦学习原理与应用/向小佳[等]著
- 出版发行项:
- 北京:电子工业出版社,2022
- ISBN及定价:
- 978-7-121-42301-7/CNY109.00
- 载体形态项:
- 12,300页:图;24cm
- 个人责任者:
- 向小佳 著
- 学科主题:
- 机器学习
- 中图法分类号:
- TP18
- 题名责任附注:
- 著者还有:李琨、王鹏、郑芳兰、田江
- 提要文摘附注:
- 本书第1章介绍联邦学习的发展背景和历程,以及金融业中数据共享的机遇和挑战。第2章~第5章介绍不同类型的机器学习方法在联邦学习模式下的实现,以及关键算法原理。第6章介绍联邦学习开源框架FATE的架构和部署,以及在金融控股集团内大数据平台上建立跨机构统一数据科学平台的实施方案。第7章从建模者的角度展示了典型建模流程的实战过程。第8章和第9章结合金融相关行业的实践,以多个应用案例和解决方案的形式,介绍联邦学习在营销运营和风险管理等不同业务方向上不同层次的应用实践。第10章从人工智能的不同方向介绍联邦学习应用扩展及前景。附录介绍了联邦学习框架中相关的密码学工具。
全部MARC细节信息>>
索书号 | 条码号 | 年卷期 | 馆藏地 | 书刊状态 | 还书位置 |
TP18/596 | CN1902805 | 内阅图书 | 阅览 | 内阅图书 | |
TP18/596 | CN1902806 | 未央馆 | 可借 | 未央馆 |
显示全部馆藏信息