MARC状态:审校 文献类型:中文图书 浏览次数:33
- 题名/责任者:
- 统计学习要素:机器学习中的数据挖掘、推断与预测/(美)特雷弗·哈斯蒂,(美)罗伯特·提布施拉尼,(美)杰罗姆·弗雷曼著 张军平译
- 出版发行项:
- 北京:清华大学出版社,2021
- ISBN及定价:
- 978-7-302-55739-5/CNY159.00
- 载体形态项:
- 22,550页:图;26cm+2
- 并列正题名:
- Elements of statistical learning:data mining, inference, and prediction
- 其它题名:
- 机器学习中的数据挖掘、推断与预测
- 个人责任者:
- (美) 黑斯蒂 (Hastie, Trevor) 著
- 个人责任者:
- (美) 蒂伯沙拉尼 (Tibshirani, Robert) 著
- 个人责任者:
- (美) 弗雷曼 (Friedman, Jerome) 著
- 个人次要责任者:
- 张军平 (1970-) 译
- 学科主题:
- 机器学习
- 中图法分类号:
- TP181
- 版本附注:
- 据原书第2版译出
- 相关题名附注:
- 封面英文题名:The elements of statistical learning: data mining, inference, and prediction
- 提要文摘附注:
- 本书在一个通用的概念框架中描述通用于数据挖掘、机器学习和生物信息学等领域的重要思想和概念。这些统计学范畴下的概念是人工智能与机器学习的基础。全书共18章,主题包括监督学习、回归的线性方法、分类的线性方法、基展开和正则化、核光滑方法、模型评估和选择、模型推断和平均、加性模型、树和相关方法、Boosting和加性树、神经网络、支持向量机和柔性判断、原型方法和最近邻、非监督学习、随机森林、集成学习、无向图模型和高维问题等。
全部MARC细节信息>>
索书号 | 条码号 | 年卷期 | 馆藏地 | 书刊状态 | 还书位置 |
TP181/240 | CN1861633 | 内阅图书 | 阅览 | 内阅图书 | |
TP181/240 | CN1861634 | 未央馆 | 可借 | 未央馆 |
显示全部馆藏信息